Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Quantifying relative contributions of plant transpiration (T) and soil evaporation to evapotranspiration (ET) is crucial to better understand how vegetation influences and controlsET, the largest efflux of the terrestrial water balance. Here, we derive estimates of transpiration fraction (T/ET) using consistent isotope‐basedETpartitioning methods for 13 sites spanning five ecosystem types of the continental US, capturing 56 snapshots ofT/ETduring the growing season. We found transpiration dominated theETflux across all sites with a meanT/ETof 0.81 ± 0.08 (±standard error). Sites and dates with higher vegetation indices exhibited higherT/ETand transpiration rates, with the latter increasing 0.30 mm/day per unit Leaf Area Index and 2.9 mm/day per unit Normalized Difference Vegetation Index. Counter to expectations, antecedent precipitation had no effect onT/ET. Despite the breadth of ecosystems and conditions represented, evaporation exceeded transpiration only once, suggesting that evaporation rarely dominatesETin the growing season.more » « less
-
Abstract Land surface models (LSMs) play a crucial role in elucidating water and carbon cycles by simulating processes such as plant transpiration and evaporation from bare soil, yet calibration often relies on comparing LSM outputs of landscape total evapotranspiration (ET) and discharge with measured bulk fluxes. Discrepancies in partitioning into component fluxes predicted by various LSMs have been noted, prompting the need for improved evaluation methods. Stable water isotopes serve as effective tracers of component hydrologic fluxes, but data and model integration challenges have hindered their widespread application. Leveraging National Ecological Observation Network measurements of water isotope ratios at 16 US sites over 3 years combined with LSM‐modeled fluxes, we employed an isotope‐enabled mass balance framework to simulateETisotope values (δET) within three operational LSMs (Mosaic, Noah, and VIC) to evaluate their partitioning. Models simulatingδETvalues consistent with observations were deemed more reflective of water cycling in these ecosystems. Mosaic exhibited the best overall performance (Kling‐Gupta Efficiency of 0.28). For both Mosaic and Noah there were robust correlations between bare soil evaporation fraction and error (negative) as well as transpiration fraction and error (positive). We found the point at which errors are smallest (x‐intercept of the multi‐site regression) is at a higher transpiration fraction than is currently specified in the models. Which means that transpiration fraction is underestimated on average. Stable isotope tracers offer an additional tool for model evaluation and identifying areas for improvement, potentially enhancing LSM simulations and our understanding of land‐surface hydrologic processes.more » « less
-
Abstract Terrestrial evapotranspiration is the second‐largest component of the land water cycle, linking the water, energy, and carbon cycles and influencing the productivity and health of ecosystems. The dynamics of ET across a spectrum of spatiotemporal scales and their controls remain an active focus of research across different science disciplines. Here, we provide an overview of the current state of ET science across in situ measurements, partitioning of ET, and remote sensing, and discuss how different approaches complement one another based on their advantages and shortcomings. We aim to facilitate collaboration among a cross‐disciplinary group of ET scientists to overcome the challenges identified in this paper and ultimately advance our integrated understanding of ET.more » « less
An official website of the United States government
